
A 
Statistics 

Primer 
For Foresters 

The science of using data isn't just for 
researchers. 

By Susan G. Stafford 

tatisticians have been accused of more than their fair share of im- 
propriety. The poet W.H. Auden 

quipped, "Thou shalt not sit with stat- 
isticians nor commit a social science." 
Books have been written with the dis- 
paraging titles of How to Lie with Sta- 
tistics (Huff 1954) and How to Use (and 
Misuse) Statistics (Kimble 1978). Nu- 
merous other examples exist of this im- 
plied mistrust of statistics and statisfi- 
eians. 

The notion that we can prove any- 
thing by manipulating numbers with 
statistics is a popular misconception. In 
fact, the objective of statistics--the sci- 
ence that studies the collection and in- 
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terpretation of numerical data (Clarke 
and Cooke 1978)--is to answer a gen- 
eral question on the basis of only spe- 
cific, limited information. For example, 
we could use statistics to help assess 
various root-wrenching treatments 
(boldfaced terms are defined in the 
glossary on page 157). How do the 
treatments affect survival, growth, and 
morphology of nursery seedlings? We 
could also determine how various site 
preparation treatments affect growth 
and survival of trees in a reforestation 
unit. 

Because information is rarely, if ever, 
complete, we must rely on statistics: Is 
our small-scale observation likely to oc- 
cur on a large scale? For instance, is 
what we observe in a sample of two- 
year-old Douglas-fir seedlings likely to 
occur in the population of all two-year- 
old Douglas-fir seedlings in the North- 
west? Or was it only a chance occur- 
renee? 

Statistics is only a tool. Like any 
other tool, it can produce meaningful 
results when properly used and incor- 
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rect ones when misused. Under the 
right conditions, however, statistics can 
be a powerful analytical technique for 
forest managers, helping them deter- 
mine the best answers to important 
questions on the basis of the informa- 
tion given; and, in the process, avoid 
the costly mistakes made when deci- 
sions must be based on limited informa- 
tion. This article addresses what those 
"right conditions" should be. 

Terms and Concepts 

Every experiment should start with 
a question to be answered. For exam- 
ple, do different root-wrenching treat- 
ments affect seedling growth differ- 
ently? Or, how do different 
site-preparation techniques affect seed- 
ling survival? Statisticians state these 
questions as hypotheses. To test the 
validity of a given hypothesis, we draw 
a sample from a population (fi#. la), 
conduct an appropriately designed ex- 
periment, and draw inferences based 
on the data gathered in that experi- 

merit and on the experimenter's inter- 
pretation of that data. The sample se- 
lected should be representative of the 
population if the inferences drawn are 
to be correct. Note that an experi- 
menter is not necessarily a researcher, 
but can be a nursery manager, field for- 
ester, harvesting specialist, or certified 
silviculturist--in short, anyone posing a 
question for investigation. 

We first need to determine the popu- 
lation of interest. For example, in the 
root-wrenching case, the population of 
interest might be all conifer seedlings 
growing in nurseries, all conifer seed- 
lings growing in Pacific Northwest nur- 
series, or all conifers of a particular 
species growing in a single nursery. 
The population can be very large or 
very small depending upon the ques- 
tion to be answered. 

We can add sideboards to the popula- 
tions and hypotheses, which have the 
effect of limiting our conclusions. Or we 
can remove those sideboards, which 
will make our conclusions more general 

and give them a wider scope of infer- 
ence. Usually time, money, and materi- 
als determine how wide a scope of in- 
ference a study can have. For example, 
we could restrict a root-wrenching 
study to only a few seedlings from one 
seedlot grown in one seedbed in one 
nursery. Although this restriction 
would be rather extreme, it is accept- 
able as long as we keep our sideboards 
in mind at the study's end and do not 
try to ascribe far-reaching applicability 
to our narrowly derived results. That 
is, it would be grossly misleading to ap- 
ply results from a few seedlings in one 
seedbed in one nursery to all seedlings 
in all nurseries. 

Once populations and hypotheses are 
defined, we must determine what to 
measure and compare. Typically, for- 
esters are interested in the mean mea- 
surement (fig. lb)--for example, mean 
height of all two-year-old Douglas-fir 
seedlings in Pacific Northwest nurser- 
ies. The mean is a numerical character- 
istic describing the population and is 
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Figure 1. Foresters can use statistical concepts to gain meaningful silvicultural information. For instance, a sample (a) can be 
drawn from the population of two-year-old Douglas-fir seedlings in Pacific Northwest nurseries. Various sample characteristics can 
then be determined (b-e) to reveal more about tree growth. 
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one of several population parameters. 
Because these parameters are virtually 
impossible to determine exactly be- 
cause of the vastness of a population, 
we generally measure a sample esti- 
mate that corresponds to a particular 
population parameter. For example, we 
may select a representative sample of 
two-year-old Douglas-fir seedlings from 
Northwest nurseries and try to ascer- 
tain mean sample height. Sample esti- 
mates are far more useful than popula- 
tion parameters because measuring 
every individual in a population rarely 
is feasible. In fact, most statistical con- 
clusions will be based on interpretation 
of sample estimates, not population pa- 
rameters. But bear in mind that the fi- 
nal focus reverts to the population (fig. 
la). 

Knowing only the mean is not 
enough. We must look at how values 
are distributed around the mean. The 
normal distribution, or bell-shaped 
frequency curve (fig. lc), is the sym- 
metrical distribution occurring most of- 
ten in nature. The curve is represented 
by many observations near the mean, 
or center, and few observations near 
the "tails," or ends. The standard devi- 
ation characterizes the dispersion (or 
"spread") of individuals in a population 
or sample values about the mean 
(Freese 1967) and is commonly used to 
"qualify" the mean. 

For example, if we estimate the popu- 
lation mean of two-year-old Douglas-fir 
seedlings to be 20 cm, the more uni- 
form (homogeneous) the population is, 
the smaller the standard deviation will 
be. Conversely, the more diverse (het- 
erogeneous) the population is, the 
larger the standard deviation will be 
(fig. ld). Geometrically, the distance be- 
tween the mean and the point of inflec- 
tion of the normal distribution curve is 
the standard deviation. Algebraically, 
the standard deviation is the square 
root of the variance. The more disper- 
sion in a population, the greater the 
variance. This of course influences sam- 
pling-that is, we need a larger sample 
to adequately test a more diverse popu- 
lation than we do to test a more uni- 

Population A: summer-wrenched seedlings 
Population B: fall-wrenched seedlings 

(a) Complete identity between A 
and B. 
Conclusion: A = B 

(b) Large overlap between A and 
B. 
Conclusion: A probably 
equal to B 

A - 
(c) Very little overlap between A 

and B. 
Conclusion: A probably not 
equal to B 

(d) No overlap between A and B. 
Conclusion: A. B 

Figure 2. Assessing the similarities and differences of two seedling populations. 

form one. 

The sole purpose in calculating sam- 
ple estimates as specific values is to get 
a handle on a biological question. For 
instance, we may calculate mean sam- 
ple height of two-year-old Douglas-fir 
seedlings to better assess the silvicul- 
tural implications of using a new nur- 
sery practice or site-preparation tech- 
nique. Whether we ultimately consider 
that practice or technique operationally 
feasible will depend on the statistical 
inferences drawn from our sample. 

Hypothesis Testing 
Suppose, for example, that a forester 

wants to compare the results of root- 
wrenching Douglas-fir seedlings in 
summer and in fall. The populations of 
interest would be all summer root- 
wrenched and all fall root-wrenched 
Douglas-fir seedlings. The objective is 
to determine if one population differs 
from another in some measured charac- 
teristic-say, height or diameter 
growth, survival, or shoot: root ratio. 

Hypotheses may be phrased in two 
ways. The null hypothesis states an 
equality between population param- 
eters-for example, mean height of 
summer-wrenched seedlings equals 

that of fall-wrenched seedlings. The al- 
ternate hypothesis states a difference 
between parameters (and what the for- 
ester hopes to prove)--for example, 
mean height of summer-wrenched 
seedlings is less than that of fall- 
wrenched seedlings. The null and alter- 
nate hypotheses are purposely stated 
this way to provide a basis for proof by 
contradiction (Mendenhall 1975). If, on 
the basis of our study, we were able to 
soundly reject the null hypothesis, then 
we could conclude that the alternate 
hypothesis was correct. 

The decision would be easy if all ex- 
perimental results were as evident as 
those in figures 2a and 2d. In 2a, popu- 
lations clearly are equivalent, and in 2d 
they are distincfiy different. Unfortu- 
nately, the situation is usually more like 
the intermediate cases (2b and 2c), in 
which there is some uncertainty about 
population similarities and differences. 
In 2b we would probably conclude that 
summer- and fall-wrenched seedlings 
are the same because of the large over- 
lap between the two populations. Con- 
versely, in 2c we would probably con- 
clude that summer- and fall-wrenched 
seedlings are different because of the 
minimal overlap. But because statistics 
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"Thou shalt not sit with statisticians nor 
commit a social science." 

can never give a definite answer and 
can only quantify the shade of grey, we 
will occasionally reach the wrong con- 
clusion-that is, make errors. 

Statistical errors are of two types 
(fig. 3). For instance, suppose the null 
hypothesis (Ho) states that summer- 
wrenched seedlings are equivalent to 
fall-wrenched seedlings. If we con- 
cluded in figure 2c that treatment ef- 
fects of summer and fall wrenching 
were different when in fact they were 
the same, we would be making a Type I 
error (fig. 3). The probability of mak- 
ing a Type I error is denoted by a. 

On the other hand, if we concluded in 
figure 2b that treatment effects of sum- 
mer and fall wrenching were the same 
when they actually were different, that 
would be a Type II error (fig. 3). The 
probability of making a Type II error is 
denoted by 8. Unfortunately, Type I 
and II errors are not independent of 
one another and often work against 
each other. The best that experi- 
menters can hope to do is minimize the 
probability of making these errors. 

Statistics can help in the common sit- 
uations like figures 2b and 2c by allow- 
ing us to quantify (in terms of probabil- 
ity) the risk taken when we conclude 
that summer- and fall-wrenched seed- 
lings are the same in 2b but different in 
2c. The term significant is often used 
in this context. "Significant" really 
means "significantly different"--that 
is, significant results show a real differ- 
ence between populations (for example, 
between summer- and fall-wrenched 
seedlings). The significance level re- 
fers to the probability that we have 
drawn the wrong conclusion and is de- 
fined as a--that is, the probability of 
making a Type I erron Traditionally, an 
acceptable a level is 0.05 or 0.01. If, for 
example, in figure 2c we conclude that 
summer- and fall-wrenched seedlings 
differ significantly at a = 0.05, there is 
a 5-percent chance that we are wrong 
(and a 95-percent chance that we are 
correct). 

The a, or significance, level reflects 
the amount of confidence the experi- 
menter has in a conclusion; a small a 

corresponds to a high degree of confi- 
dence because the chance of being in- 
correct is relatively small. To choose 
the appropriate a level, the experi- 
menter should estimate the conse- 
quence that would be incurred by con- 
cluding that summer- and 
fall-wrenched seedlings are different 
when they are not. If such a mistake 
would be costly, the a level should be 
set quite small so that a •pe I error 
may be minimized. This is something 
only the experimenter can decide. Be- 
cause statistics allows us to draw a con- 
clusion without being absolutely cer- 
tain, we must always assign that 
conclusion a probability of being incor- 
rect (in this example, 5 percent); other- 
wise it might be misleading. 

It is important to stress, however, 
that a test that is statistically signifi- 
cant cannot tell us if the observed dif- 
ference is important silviculturally or 
biologically. It can only tell us that the 
observed difference is probably not 
caused by chance, or natural variation, 
alone. 

Comparing Means 

The root-wrenching case we have 
been discussing involves the compari- 
son of two sample means. Suppose the 

mean height of a sample of summer 
root-wrenched seedlings was 30 cm and 
that of fall-wrenched seedlings was 45 
cm. We need to know if that 15cm 
height difference is "large" or "small" 
to determine whether this is a true 
treatment difference or one due to 
chance, or natural variation, alone. If 
we assume that each sample was rela- 
tively small, that it was randomly se- 
lected, and that the measurements 
came from normally distributed popu- 
lations (see fig. lc), then the t-test is 
the appropriate statistical tool. The t- 
test is conducted by dividing the differ- 
ence between the two sample means by 
an appropriate estimate of the varia- 
tion (dispersion). 

Variation among sample means is due 
partly to sampling error (the varia- 
tion, due to chance alone, incurred by 
selecting random samples to represent 
the population). Sampling error will al- 
ways be present because each sample 
mean cannot exactly equal the popula- 
tion mean. Nonsampling errors (inac- 
curacies from, say, poor field technique 
or calibration mistakes) can also ac- 
count for variation among sample 
means. 

In the root-wrenching case, by divid- 
ing the difference between the two 

Root-wrenching 
Reality Decision Consequence case 

Retain H0=•. OK Treatments the same 
True 

• Reject Ho =•. Type I Error (c0 Treatments believed different when same 

Null hypothesis (Ho) 

• Retain Ho =•. Type II Error (113) Treatments believed •F same when different 
False 

• Reject H. • OK Treatments different 

Figure 3. Decision-making and its possible consequences. The null hypothesis (HJ 
states that there is no difference between summer- and fall-wrenched seedlings. A 
•lpe ! error would result if we concluded that seedlings from the two wrenching 
treatments were different when they were the same. A •ipe !I error would result if 
we concluded that seedlings were the same when they were different. 
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means (15 cm) by an estimate of the 
variation, we can scale that difference 
and use our estimate of the variation as 
a yardstick of the amount of variation 
due to chance alone. This helps us de- 
cide statistically if the 15cm difference 
is large or small. If 15 is large relative 
to our estimate, then there is probably 
a real difference between the summer- 
and fall-wrenched seedlings. If 15 is 
small relative to our estimate, then the 
difference is probably due to chance 
alone (i.e., sampling error). In a popula- 
tion where data are dispersed (see fig. 
le), 15 units may be a relatively small 
difference, but in a population where 
data tend to duster (see fig. ld), 15 
units may be a relatively large differ- 
ence. This emphasis on relative, rather 
than absolute, values is the hallmark of 
statistics over mathematics. 

Analysis of Variance 
Suppose a forester wants to compare 

four root-wrenching treatments (bi- 
monthly intervals from April through 
October) and a control. Note that a 
control can be considered either sepa- 
rately or as another treatment. In this 
case the forester would be testing a hy- 
pothesis about five populations, not 
just two. This case could be handled 
with the popular and commonly used 
technique analysis of variance 
(ANOVA). 

It would be far less misleading if this 
technique were called analysis of 
means (Iverson and Norpath 197(3) be- 
cause it tests for differences between 
two or more treatment means. In fact, 
an analysis of variance testing the dif- 
ference between only two means is ac- 
tually the same as the t-test just dis- 
cussed. Using ANOVA, foresters can 
compare the variation between differ- 
ent root-wrenching treatment means 
with the amount of variation inherent 
within the experimental seedlings 
themselves. 

To get a clearer picture of this, let us 
present our t-test root-wrenching ex- 
ample as an ANOVA problem, again as- 
suming randomly selected samples 
drawn from normally distributed popu- 

Root wrenching 
buffer 

TRMT TRM TRMT CTL RM 

(a) Treatments randomly 
assigned to 5 nursery beds e,ows 

(b) Treatments randomly 
assigned within a 
nursery bed divided 
into fifths 

Site preparation 

5 acres 

[•:"'• ....... ''' '' - "?; .... :•-reated buffer 
[TRMT;•:T. RM.. T.•._. CT•TRMTJ 

(c) Treatments randomly assigned 
to 4 plots within a reforestation 
unit (40- 150 acres) 

Figure 4. Random assignment of treatments (TRMT)--including a control (CTL)-- 
(a) to five nursery beds, (b) within one nursery bed divided into fifths, and (c) to 
four plots within a reforestation unit. 

lations. We are comparing the variation 
between the two treatment groups 
(summer- and fall-wrenched seedlings) 
with the variation inherent within each 
treatment group. If mean sample 
height differs more between treatment 
groups than within either one, then the 
two populations probably truly differ. 
That is, the variation is too large to 
have been caused by sampling error 
(chance) alone. But if mean sample 
height of the two treatment groups is 
about the same, then the populations 
probably do not truly differ. That is, the 
difference between the means is small 
enough to have occurred by chance. 
Even if the mean height of the fall- 
wrenched seedlings is just slightly 
larger than that of the summer- 
wrenched seedlings, we would conclude 

that sampling error alone could account 
for this difference and, therefore, that 
the two treatment groups are not sig- 
nificantly different. 

Experimental Design 
Randomization and replication are 

the basic principles of sound experi- 
mental design (Little and Hills 
1978). 

Randomization can be likened to an 
insurance policy (Cox 1958): it helps 
guarantee that no one treatment is 
preferentially assigned to an experi- 
mental unit. Randomization ensures a 
valid measure of experimental error. 
We would not want to jeopardize the 
credibility of the total experiment by, 
for example, assigning a favorite treat- 
ment to the healthiest seedlings-- 
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Block I 

Block IV I 

8 rows 
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TRMT4 

CTL 

TRMT 1 

TRMT 2 
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T R M T 3 

•,z•..••• 
CTL 

TRMT1 

TRMT4 

TRMT3 

TRMT2 

TRMT 1 
• ,,.- .', '..w.-•• 

TRMT2 

TRMT4 

TRMT3 

CTL 

CTL 

TRMT2 

Block II 

Block III 

Figure 5. Root-wrenching study in which five treatments (TRMT = treatment, 
CTL = control) are randomly assigned within each of four blocks establL•hed in two 
nursery beds. 

which probably would have grown the 
most anyway--or outplanting trees on a 
prepared site that had less slash and 
more mineral soil, which might give 
those trees an innate advantage re- 
gardless of the treatment applied. 

In the root-wrenching case, we can 
randomly apply the five treatments (in- 
cluding a control) to all seedlings in 
each of five nursery beds (fig. 4a), or we 
can divide one nursery bed into five 
equal lengths and randomly assign the 

five treatments to each fifth, if using 
five beds is not operationally feasible 
(fig. 4b). Similarly, in the case of site 
preparation, we could divide each of 
four reforestation units into four 5-acre 
plots and randomly assign one of the 
four site-preparation treatments (in- 
cluding a control) to each plot (fig. 4c). 
Notice in figure 4c that the site-prepa- 
ration treatments are contiguous. They 
do not have to be: this is only one possi- 
ble configuration of the experiment. 

The topography and local conditions 
usually will determine the physical ar- 
rangement. 

Replication is the repetition of a 
treatment on more than one group of 
seedlings. This provides a way of com- 
puting experimental error. Without 
replication, we have only a case study-- 
an unreplicated experiment with lim- 
ited applicability, or scope of inference. 
There is no way of knowing if results 
are significant or if they can be repro- 
duced. 

What we are replicating is often con- 
fusing. However, there is an important 
distinction between measuring 2,000 
seedlings in one treated nursery bed 
and measuring 500 seedlings in each of 
four similarly but independently 
treated beds. Even though the same to- 
tal number of seedlings would be mea- 
sured in both cases, the latter case pro- 
vides stronger results because we have 
truly replicated the treatments, not 
just the sampling units (seedlings). 

A group of experimental units to 
which a complete set of treatments is 
assigned is called a block. For exam- 
ple, the group of five nursery beds in 
figure 4a and the single bed divided 
into fifths in 4b both are blocks because 
each contains a complete set of five 
treatments. Similarly, each reforesta- 
tion unit containing all four treatments 
(fig. 4c) is a block. Blocks can be areas 
of different soil type, slope, aspect, veg- 
etative competition, or any other char- 
acteristic or combination of characteris- 
tics. 

To illustrate blocking, suppose we de- 
signed an experiment to determine how 
the previously mentioned bimonthly 
wrenchings would affect seedling mor- 
phology. We will use a uniform portion 
of a nursery bed as a block and would 
like four blocks in total (fig. 5). Each 
block, 130 feet long, is to comprise five 
20-foot treatment areas and 5-foot 
buffer zones between these areas. 
Buffers are usually untreated areas be- 
tween treatments where plots are 
small (see fig. 4a, b) but can actually be 
part of the treated area where plots are 
large (see fig. 4c). But such treated 
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"The notion that we can prove anything by 
manipulating numbers with statistics is a 

popular misconception." 

buffers are not actually sampled. Be- 
cause only two beds are available, each 
must accommodate more than one 
block. 

After walking the beds, we find that 
they are not uniform. Though we can 
easily find room for two blocks in one 
bed, the other has several hundred feet 
of poorly drained soil that makes it un- 
desirable for use in this study. None- 
theless, the last 60 feet of both beds are 
in a higher lying area and are healthy. 
Differences within blocks should be as 
small as possible so that treatment lo- 
cation within the block will not bias 
treatment response. However, differ- 
ences between blocks should be as 
large as possible so that the same treat- 
ment, applied in each block, has an 
equal chance of performing under a va- 
riety of experimental conditions. 
Therefore, blocks should not be as- 
signed randomly within an experiment. 
Since the blocking criteria are to make 
the differences between blocks as large 
as possible but the differences within 
blocks as small as possible, we can con- 
sider the last 60 feet of both beds, com- 
bined, as block IV. 

Design Types 

The basic principles that we have dis- 
cussed apply to all types of experimen- 
tal designs. The design merely tells the 
experimenter how to arrange the treat- 
ments within the replications. 

For example, in a completely random- 
ized design, no consideration is given to 
the physical arrangement and proxim- 
ity of individual treatments. In a ran- 
domized complete block design, a com- 
plete set of all treatments is grouped 
together in a block, with treatments 
randomly assigned within the block, as 
in our root-wrenching and site-prepara- 
tion cases (figs. • and 5). In a split-plot 
design, two sizes of experimental 
units--the whole plot and the subplot-- 
are combined, the subplots superim- 
posed on the whole plots. The treat- 
ments applied to the whole plots need 
to be applied to a larger area than the 
treatments applied to the subplots. 
Many other types of designs exist. 

Block IV 

Block II 

BI 

Root-wrenching treatments 

Figure 6. Split-plot design for the outplanting phase of a nursery study. Nursery 
root-wrenching subplot treatments ffRMT) and a control (CTL) are superimposed 
on the site-preparation whole plot treatments (1 -- spray, 2 = slash and burn, 
3 -- scarification with bulldozer) and a control on four reforestation units. 

Those named here are probably the 
most often used by foresters. 

Planning 
Many problems can be avoided ff for- 

esters carefully plan the stages of ex- 
perimentation and formulate them into 
a study plan written before beginning 
an experiment. For example, conduct- 
ing an outplanting phase of a nursery 
study is often desirable so that field 
performance of seedlings grown under 
various nursery cultural practices can 
be evaluated. By combining our root- 
wrenching and site-preparation cases, 
we can examine each study individually 
and also look at any interactions be- 

tween the various wrenching and site- 
preparation treatments. Let us con- 
sider how this combination could be 
arranged in a split-plot design. 

Suppose we want to install a set of 
four site-preparation treatments 
(CTL = control, 1 = spray, 2 = slash 
and burn, 3 = scarification with bull- 
dozer) on each of four reforestation 
units (blocks) (fig. 6). Again, notice that 
the 5-acre plots within each block do 
not need to be contiguous as long as the 
area over which the treatments are ap- 
plied within the block is as uniform as 
possible. 

We planned to have 200 seedlings per 
block available for the outplanting 
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phase of the nursery experiment. We 
could divide those 200 seedlings into 
four groups of 50 and m•'ange each 
group of 50 in five rows of 10 seedlings 
each (each row representing a different 
root-wrenching treatment, randomly 
assigned) on each 5-acre plot of each 
site-preparation block (fig. 6). That is, 
we could superimpose the nursery out- 
planting study on the existing site- 
preparation study, thereby creating a 
split-plot design in which the larger 
site-preparation plots are the whole 
plots and the small rows of root- 
wrenched seedlings, 50 per plot, are 
the subplots. This would allow us to 
test for differences among the site- 
preparation treatments and the nur- 
sery root-wrenching treatments, and 
for interactions between the two sets of 
treatments. 

In the split-plot illustration just de- 
scribed (see fig. 6), it is critical to de- 
cide how many seedlings to plant ini- 
tially so that adequate numbers are 
produced for all phases of the total 
study. Experimenters must take into 
account the expected survival (or mor- 
tality), the desired precision of mea- 
surement, the study duration, the kind 
of sampling, and the number of mea- 
surements to be taken. What to mea- 
sure is often a problem, but it must be 
determined before designing an experi- 
ment to ensure adequate sample size. 
Survival cannot be meaningfully mea- 
sured on just one seedling. We would 
need 10 seedlings to measure survival 
to the nearest 10 percent and 100 seed- 
lings to measure it to the nearest I per- 
cent. But if resources limit foresters to 
measuring survival to the nearest 5, 10, 
or 20 percent, then they must consider 
ahead of time the consequences of a re- 
duced sample size. Sometimes the best 
decision is not to do the experiment at 
that time and to •it until more re- 
sources are available. 

Working Statistics 
The proof of how well a forester uses 

statistics is how well the experiments 
answer the questions they are designed 
to address. 

The split-plot illustration described 
above points up the strength and flexi- 
bility of installing soundly planned ex- 
perimental designs. Requesting help 
from a knowledgeable source--a statis- 
tician or biometrician--before data are 
collected can be a valuable step in pre- 
venting waste and frustration during a 
study. Similarly, the type of analysis to 
be conducted should be determined in 
the early planning stages. Since the ad- 
vent of computers, the wrong answers 
can now be reached much more quickly 
and easily than ever before. Remember 
that the computer, like statistics, is 
only a tool and must not be allowed to 
dictate experimental or analytical ap- 
proach. 

Moreover, many excellent commercial 
software packages (programs) are avail- 
able--SAS (Barr et al. 1976), SPSS (Nie 
et al. 1970), SPSS-X (SPSS Inc. 1983), 
BMDP (Dixon 1983), and MINITAB 
(Elkins 1971), to mention just a few. If 
one package is inadequate, investigate 
others. A wide variety of techniques, in 
addition to the t-test and ANOVA, is 
available for analyzing data. Had we 
been interested in the relationship, say, 
between seedling growth and plant 
moisture stress, regression analysis 
could have been applied. Foresters 
should consult general statistics texts 
or a statistician or biometrician for the 
required details. 

In sum: Alwa•vs keep in mind the ob- 
jectives and purpose in conducting an 
experiment; never lose sight of the big 
picture for the sake of small details. In- 
corporate replication and randomiza- 
tion where appropriate and do not hesi- 
tate to request help from qualified 
sources. Refer to general statistics 
texts such as Little and Hills (1978), 
Freese (1967), Steel and Torrie (1981), 
and Mendenhall (1968, 1975); these 
texts, which cover the techniques dis- 
cussed in this article in greater detail, 
are very readable. With the basic ten- 
ets of experimental design in mind, for- 
esters should be well on the way to 
planning statistically sound experi- 
ments that produce statistically valid 
results. ß 
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