
USING FOREST VEGETATION PREDICTION MODELS TO INFORM DECISIONS

Erin Smith-Mateja, USDA-FS

National Advanced Silviculture Program

September 12, 2024

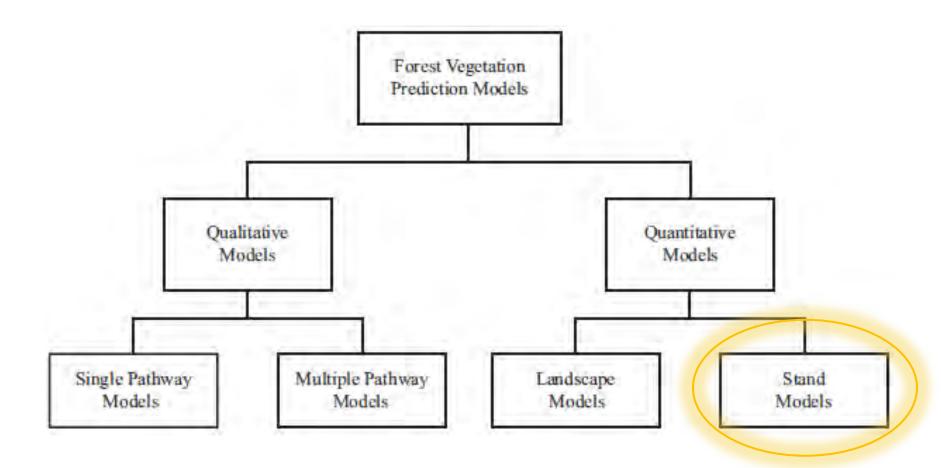
Why use a model?

All Models are wrong, but some are useful.

- George E.P. Box

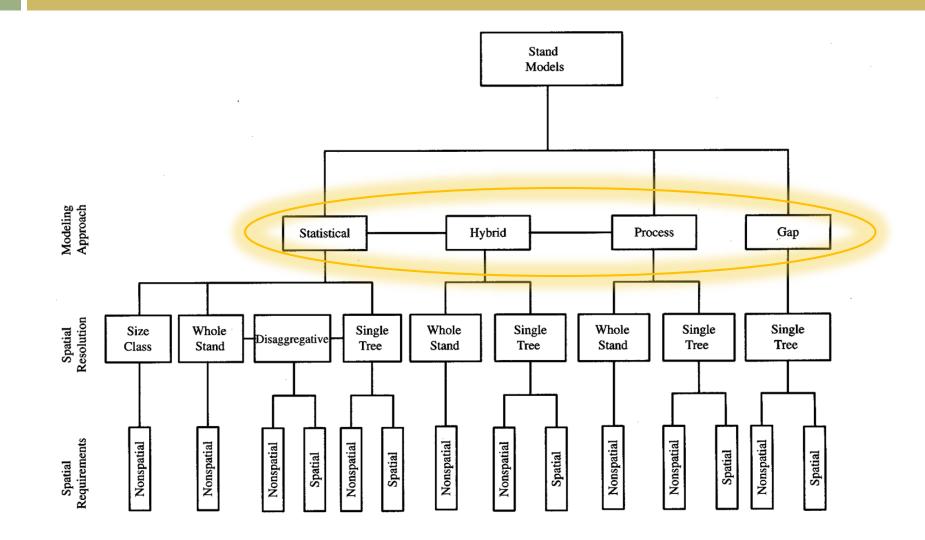
Models are an abstraction from reality that attempt to conceptualize key relationships of a system.

- Weiskittel et al. (2011)


Why use a model in forestry?

- Quickly summarize existing stand conditions
 - QMD, TopHt, TPA, BA, volumes and carbon stocks
 - DWD, snags, canopy cover, habitat indices
 - Fire, insect and pathogen hazard ratings
- Help develop prescriptions and demonstrate their effects on forest vegetation at various spatial and temporal scales
- Compare trade-offs
 - Timber production vs. wildlife habitat vs. fire hazard...

What models are available?


Web Images Mo	yre	
Google	Forest vegetation prediction models	0
Scholar	About 678,000 results (0.17 sec)	
Articles	The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models	[PDF] tandfonline.com Full Text via DigiTop
Case law My library	G Gutman, <u>A Ignatov</u> - International Journal of remote sensing, 1998 - Taylor & Francis For example, tropical forests , where fg is expected to be 1, are often the areas of persistent clouds, and, as TN, Perry, EM, and Schmugge, TJ, 1990, Remote estimates of soil moisture availability and fractional vegetation cover for Agriculture and Forest Meteorology, 52, 45±70	
Any time	Cited by 969 Related articles All 9 versions Web of Science: 491 Cite Save	
Since 2017	Tree allometry and improved estimation of carbon stocks and balance in tropical	[HTML] springer.com
Since 2016	forests	Full Text via DigiTop
Since 2013	J Chave, C Andalo, S Brown, MA Cairns, JQ Chambers Oecologia, 2005 - Springer	
Custom range	We compared a number of statistical models commonly used to estimate AGB in the forestry literature 2 Regression between the logarithm of pD 2 H and the logarithm of aboveground biomass (AGB) for the three forest types (wet, moist and dry forests)	
Sort by relevance	Cited by 1746 Related articles All 29 versions Web of Science: 885 Cite Save More	
Sort by date	Seedling recruitment in forests : calibrating models to predict patterns of tree seedling dispersion	[PDF] jstor.org Full Text via DigiTop
✓ include patents	E Ribbens, JA Silander, SW Pacala - Ecology, 1994 - Wiley Online Library	i dii toke tid Digitop
include citations	to analyze recruitment processes in forest communities and many other types of plant com- munities actual or theoretical) to predict recruitment limitation for en- tire forest communities the species composition and dynamics of transition oak-northern hardwood forests (Pacala et	
Create alert	Cited by 520 Related articles All 10 versions Web of Science: 357 Cite Save	
	[СПАТІОN] Essential FVS: A user's guide to the Forest Vegetation Simulator GE Dixon - Fort Collins, CO: USDA-Forest Service, Forest, 2002 Cited by 361 Related articles Cite Save	
	Species distribution models : ecological explanation and prediction across space and time <u>J Elith, JR Leathwick</u> - Annual review of ecology, evolution, and, 2009 - annualreviews.org the individualistic responses of species to their environment (eg, for vegetation , see Whittaker	[PDF] 148.231.212.8 Full Text via DigiTop

Forest Vegetation Prediction Models

Weiskettel et al. 2011

Modeling Approaches

Spatial Resolutions

- Whole Stand: basic units of modeling are stand parameters such as age, tpa, basal area and site index.
- Disaggregative*: links stand and individual tree models.
 Predicts stand growth and disaggregates to individual trees.
- Size Class: employ a class of trees as the basic unit for modeling, a compromise between stand and tree models.
- Individual Tree*: basic units of modeling are tree parameters such as dbh, height and crown.

* Can be spatially or non-spatially sensitive (are your plots/stands stem-mapped?)

Ok, so which model do I use?

Many choices

- Whole stand models (and yield tables)
- Individual tree models
- It really just depends... on your needs, capabilities, timeframe and most importantly, how well the model is supported!

Whole Stand Models

- Easy to develop and apply
- Limited ability to represent complex composition / structure / silvicultural prescriptions
- Highly accurate in single species, even-aged stands
- Have gone out of style, but yield tables are still used in higher level planning

Yield Tables

- A yield table typically relates volume to age and site index, for typically an even-age, single species stand.
 - Normal yield tables (full stocking)
 - Empirical yield tables (average stocking)
 - Variable density tables (uses a density variable as an independent variable)
- Use data, individual equations or models to create yield tables

Yield Tables (Publications)

Table 37.—Cubic-foot yield of wood only to a 4-inch top, outside bark, for unthinned yellow-poplar stands of various stand densities, site indexes, and ages¹

		S	ite Inde	x 90					
Trees per acre	Age (years)								
(number)	20	30	40	50	60	70			
Cubic feet per acre									
50	_	_	1,220	1,700	2,240	2,840			
100	520	1,140	1,790	2,480	3,200	3,950			
150	590	1,340	2,110	2,870	3,620	4,360			
200	650	1,480	2,300	3,090	3,820	4,490			
250	720	1,600	2,460	3,240	3,930	4,520			
300	800	1,710	2,590	3,360	_	_			
350	890	1,840	2,730	_	_	_			
		Si	te Index	100					
50	_	_	1,500	2,150	2,880	3,700			
100	600	1,380	2,230	3,150	4,150	5,220			
150	690	1,640	2,640	3,680	4,760	5,860			
200	760	1,820	2,920	4,010	5,090	6,140			
250	840	1,990	3,150	4,260	5,320	6,300			

Table 38.—International 1/4-inch board-foot yield to an 8-inch top, outside bark, for unthinned yellow-poplar stands of various stand densities, site indexes, and ages¹

		s	ite Index	c 90				
Trees per acre		Age (years)						
(number)	20	30	40	50	60	70		
			Board	feet per ac	re			
50	_	_	5,180	8,490	12,240	16,480		
100	260	2,480	6,260	10,750	15,670	20,920		
150	140	2,090	5,960	10,690	15,730	20,830		
200	80	1,630	5,210	9,750	14,530	19,120		
250	40	1,230	4,370	8,540	12,920	17,000		
300	20	880	3,520	7,230	_	_		
350	10	590	2,670	_	_	_		
		Si	te Index	100				
50		_	7,120	11,590	16,790	22,830		
100	460	3,760	9,020	15,270	22,270	29,990		
150	290	3,420	9,100	15,940	23,370	31,170		
200	180	2,930	8,540	15,430	22,770	30,150		
250	120	2,460	7,780	14,510	21.580	28,460		

Site Index 130								
50	_	_	2,650	4,000	5,630	7,590		
100	920	2,300	3,990	6,010	8,410	11,230		
150	1,070	2,800	4,870	7,280	10,060	10,060		
200	1,200	3,200	5,580	8,260	_	_		
250	1,370	3,640	6,250	9,160	_	_		
300	1,570	4,090	6,940	_	_	_		
350	1,800	4,580	7,640	_	_	_		

300	1,570	4,090	6,940	_	_	_	300
350	1,800	4,580	7,640	—	_	_	350
	ees 4.5 ind			ger are in	cluded.		'Only
Source: Be	eck and D	ella-Bianc	a (1970).				Source:

.....

Site Index 130									
50	_	_	15,160	24,950	37,190	52,270			
100	1,600	9,500	21,120	35,590	53,220	74,650			
150	1,310	10,070	23,880	40,940	61,220	_			
200	1,100	10,270	25,560	44,350		_			
250	990	10,470	26,960	47,180	_	_			
300	940	10,740	28,320	_	_	_			
350	920	11,050	_	_	_	_			

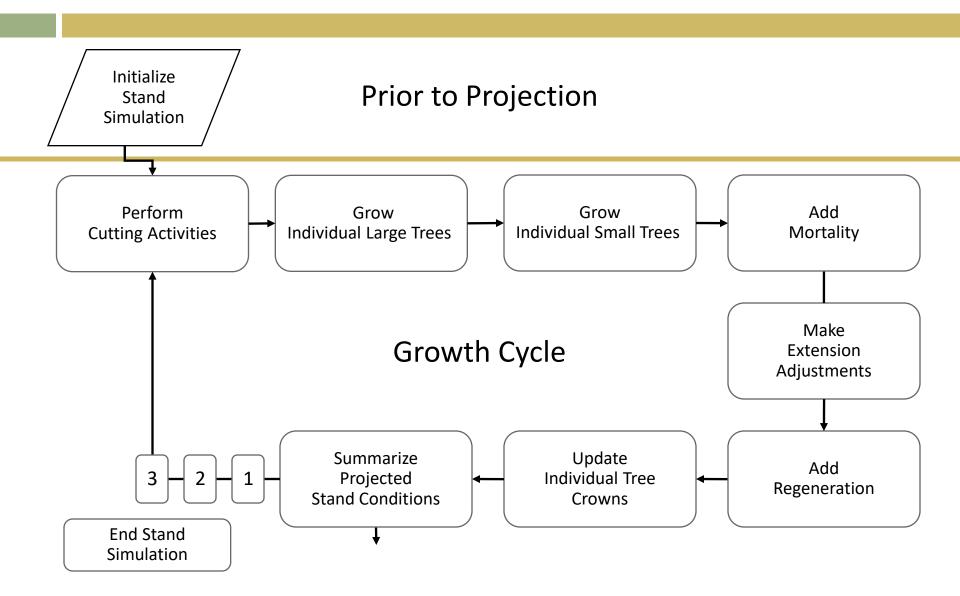
'Only trees 11 inches d.b.h. and larger are included. Source: Beck and Della-Bianca (1970).

Yield Tables (from USFS Forest Plans)

- Expands the concept of yield to many forest attributes by age
- Usually created for some combination of forest type, site class and density class stratification scheme
- Embedded within planning software to help determine SYL and PWSQ/PTSQ
- Typically use an individual tree model (FVS) to create

Individual Tree Models

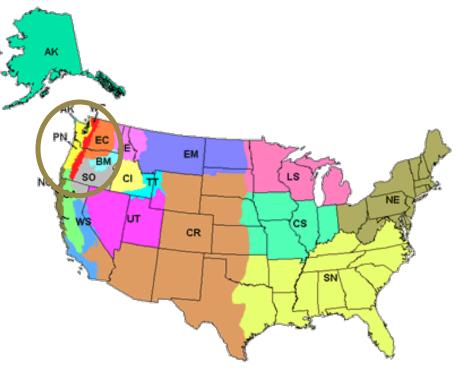
- Current standard in forest modeling!
- Expensive to develop/maintain and generally harder to use
- Produce detailed outputs of trees, plot and stand attributes
- Can incorporate many types of silvicultural prescriptions and other disturbances
- Able to represent single species, even-aged stands as well as mixed species, unevenaged stands


Forest Vegetation Simulator

- Individual-tree, distance-independent growth and yield model
- Responsive to site, structural differences and management actions common to forest stands found throughout the United States
 Inventory-based system that can accommodate a variety of inventory designs in projecting stand development

FVS Development Guidelines

- Use existing inventory methods as sources of input in model development
- Apply to forest stands containing any mixture of species, age structures, and site conditions
- Ensure growth projections are dependent on interactions between trees within stands
- Incorporate growth of current inventory into projections
- Provide links to other ecosystem components


FVS Model Structure

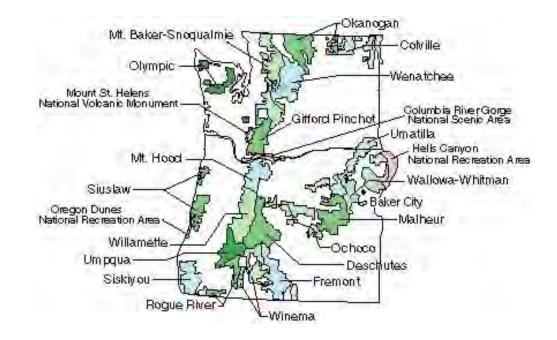
Geographic Variants of FVS

Represent species commonly found in a geographic region Local Data are used to ... create models that predict tree growth, mortality, and regeneration Focus on variants in Oregon and

Washington

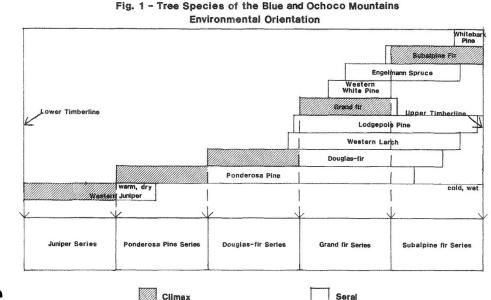
Stand Inventory Data

Stand /Site Conditions

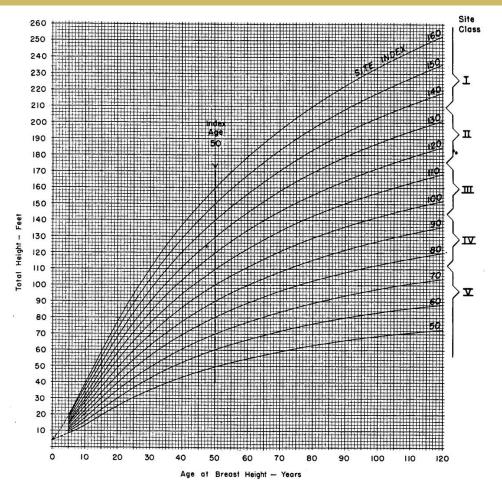

- Location
- Plant Association
- 🔲 Slope
- Aspect
- Elevation
- Site Index
- Carrying Capacity (Max SDI)

Tree Characteristics

- Species
- DBH
- 🖵 Height (total)
- 🖵 Crown Ratio
- Past Growth Increment
- 🖵 Tree Count
 - (from inventory design)


Location

- US Forest Service National Forest
- code is based on Region, Forest


Plant Association

- Washington/Oregon (R6)
- Sets default Site Index and Maximum SDI
- Each R6 variant has its own list of acceptable PA codes
- List are in the back of the variant overviews

Site Index

- single measure that integrates the effects of soil and climate on tree growth for a given site
- used to identify potential height growth and affects diameter growth
- Variants may use different SI curves for the same species.

Site Index Curves for Douglas-fir in the Pacific Northwest, King, 1966

Slope, Aspect, Elevation

- combined measures that integrate the effects of topography on tree growth for a given site
- can identify an optimal location for growth
- affects diameter growth

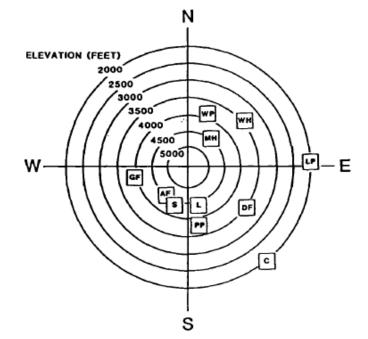
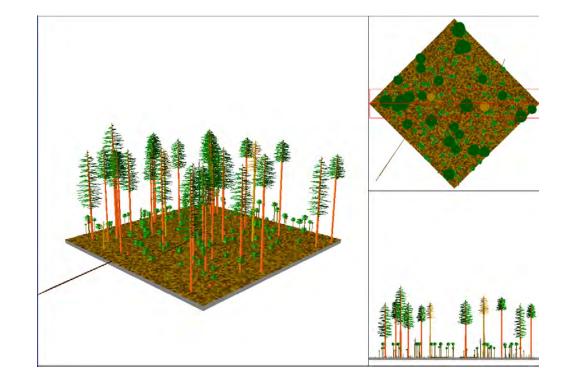



FIGURE 10. Elevation and aspect associated with maximum predicted increment with all other effects held constant. Species codes are listed in Table 1.

Wykoff 1990, Forest Science 36(4): 1077-1104

Tree Characteristics

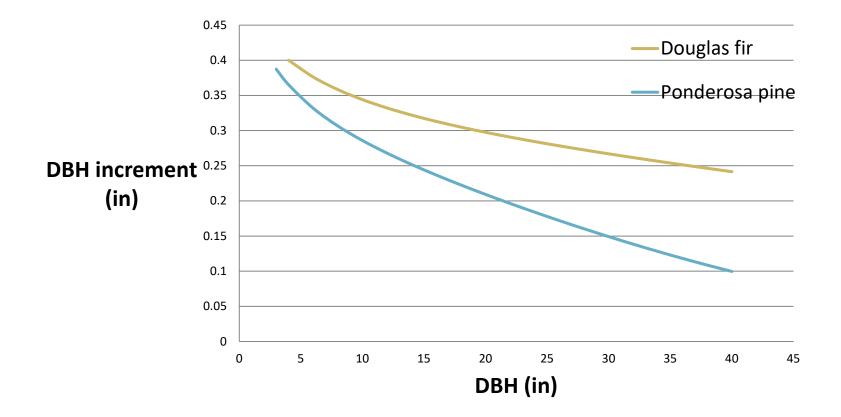
- Species
- 🗆 Size
 - 🔲 dbh
 - 🗆 ht
- UVigor
 - 그 crown ratio
 - social position
- Density
 - 🖵 basal area
 - 🔲 sdi

FVS Model Behavior

Diameter Increment

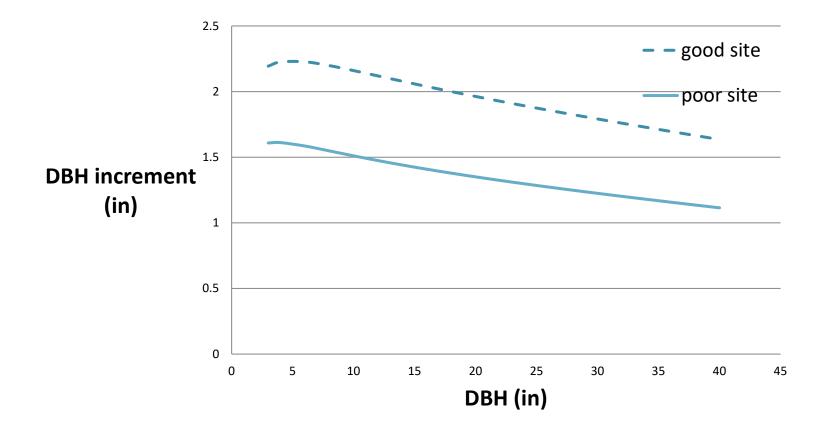
- Height Increment
- 🔲 Crown Change
- Regeneration
- Impacts from other ecosystem attributes
 - 🗆 insects
 - pathogens
 - 🗆 fire
 - climate change

Diameter Increment Model

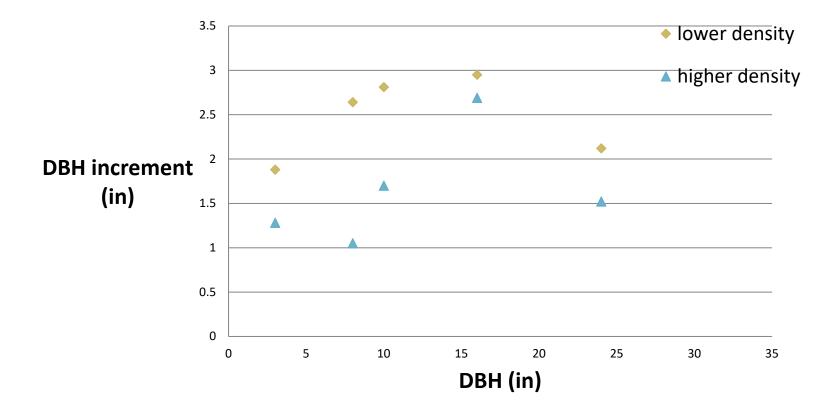

- Based on a prediction of a mean growth rate that is corrected for tree size, site quality, and the level of competition
- Derive diameter increment (DG) from predicted periodic change in squared insidebark diameter (DDS)

equivalent to a basal area increment model

linear relationship between ln(*dds*) and ln(*DBH*)


ln(dds) = SIZE + SITE + COMPETITION $DG = sqrt(dib^2+dds)-dib$

Tree Size Effects


 $Size = ln(DBH) + DBH^2$

Site Effects

Site = Site Index + Elevation+ Elevation² + Slope + Cos(Aspect) + Sin(Aspect))

Competition Effects

Competition = Crown ratio + Relative height + Basal Area + Basal Area in Larger Trees

FVS Model Behavior

- The diameter increment model shows how FVS is designed to handle differences in tree size, site quality, and stand structure
- Focusing on the growth of individual trees allows FVS to handle most stand structures
 - even-aged stands
 - two-aged stands
 - uneven-aged Stands

FVS Extensions

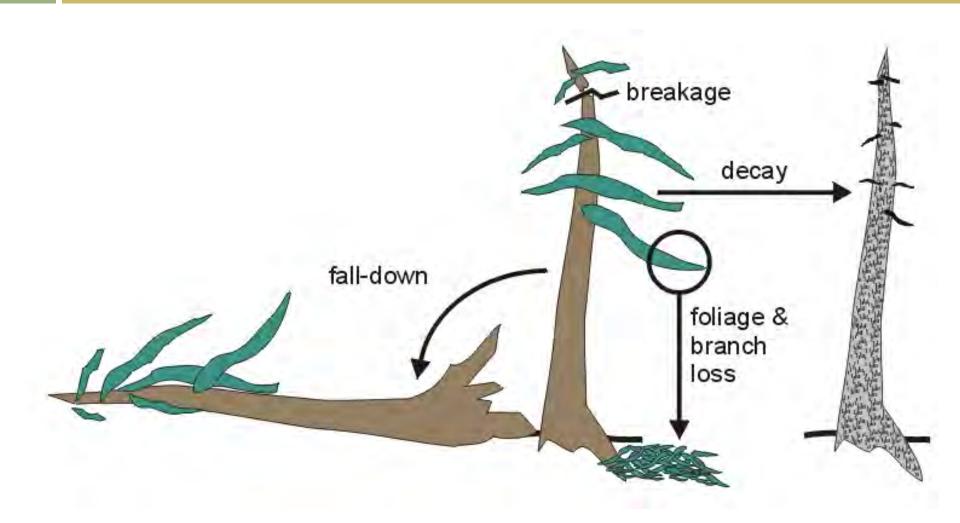
Models that interact with base FVS variants
 Simulate the effects of various ecological disturbances

- Insects and Diseases
- □ Fire and Fuels (FFE)
- Climate Change

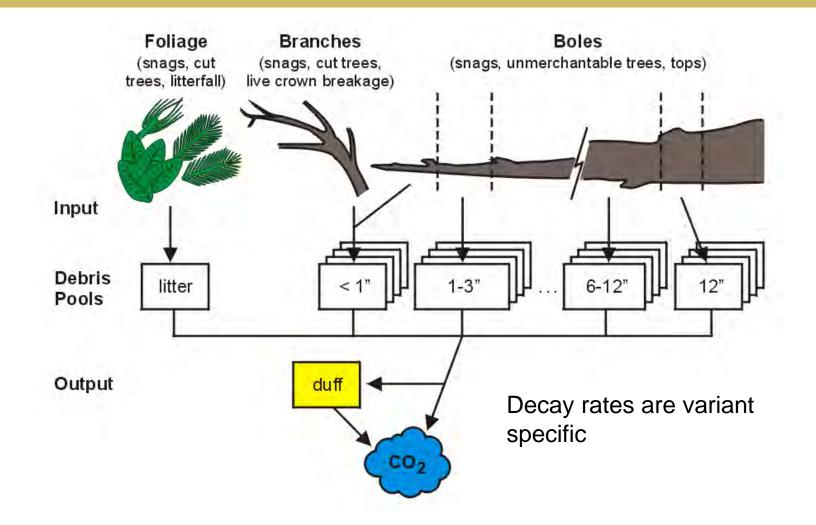
FFE-FVS CAN:

Simulate additional stand biomass dynamics over time

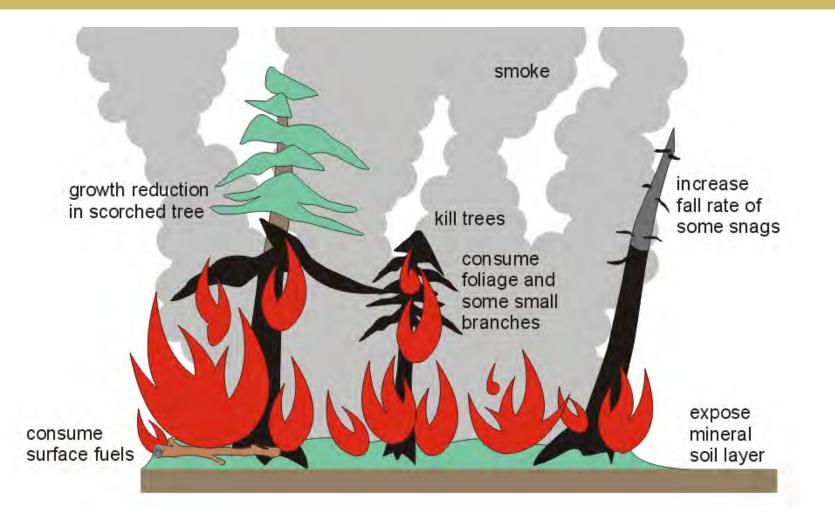
standing trees (boles and crowns)


live and dead surface fuels

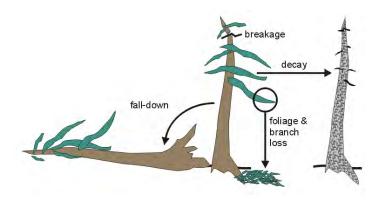
coarse roots

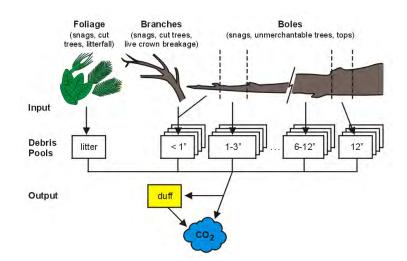

Predict or simulate the effects of fire on stand components

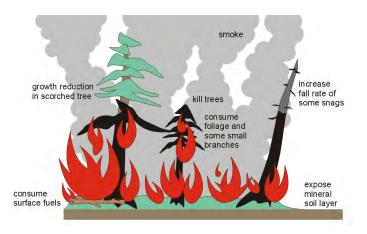
Convert biomass into carbon estimates


Snag Dynamics

Fuel Dynamics

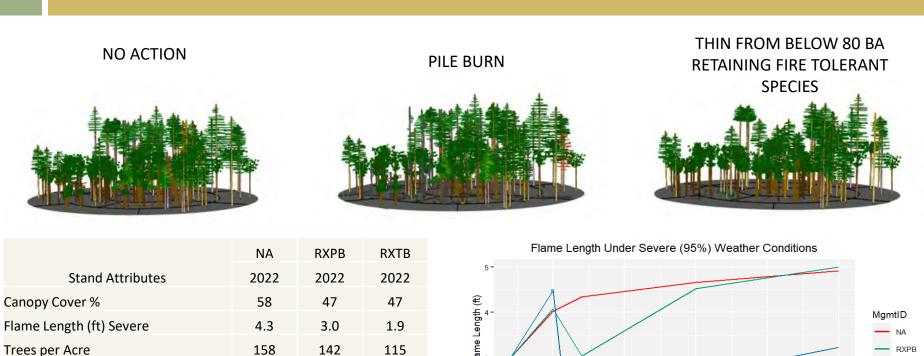



Fire Dynamics



Carbon Dynamics

FVS Growth and Yield Model


Projects single or multiple stands in a single simulation

- Models stand development with and without taking into consideration forest health concerns
- Simulates common and user-defined management actions
 - thinning methods
 - regeneration methods
 - fuels and fire management

Conclusions

- FVS is the primary growth and yield model used throughout the United States on public lands
- FVS is used primarily by silviculturists and other forestry professionals needing to compare existing and projected stand conditions with a desired stand condition
- FVS has over 40 years of development history and is actively maintained, enhanced and supported by the FMSC and its partners.

Evaluate Alternatives

Flame Length (ft) Severe	4.3	3.0	1.9
Trees per Acre	158	142	115
Basal Area (ft2/acre)	110	91	81
Quadratic Mean Diameter (in)	11	11	11
Board feet	8176	7107	6228
Board feet removed	0	0	1970

RXTB 2 -2020 2025 2035 2040 2030

Year

FVS Support

https://www.fs.usda.gov/fvs/

Software

FVS is a suite of software programs. Obtain the complete package or any of its various components. <u>Get FVS software...</u>

Training

FVS training includes self-paced training, instructor-led training, and web-based training. Read more about FVS training...

Documents

FVS documents include a variety of bulletins, users guides, manuals, and technical reports. Browse the FVS documents...

Support

The FVS Support Staff provides technical support for the Forest Vegetation Simulator. <u>Get</u> <u>FVS support...</u>